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This paper presents a fuzzy queuing model that can be used to predict the possible
delay that a vehicle will experience at an incident location based on real-time
information on current queuing conditions, traffic arrivals, lane closings. Compared
to most existing methods, the proposed model is unique in three aspects. First,
it explicitly accounts for uncertainties involved in all influencing factors and thus
allows easy incorporation of imprecise and vague information typically available
in this type of prediction environment. Second, the model is adaptive in the
way that it allows continuous update of estimates as new information is made avail-
able. Third, delays obtained from the model are fuzzy numbers that can be
conveniently mapped to linguistic terms for use in systems such as changeable message
signs (CMS). A case study is presented to demonstrate the application of the
proposed model in facilitating the composition of location-dependent delay messages
for CMS.

Keywords: Incident delay, Queuing model, Fuzzy set, Link travel time, ATIS,
ATMS

1. INTRODUCTION

Provision of timely and reliable information on traffic incidents and
subsequently induced congestion is a critical ability to the successful
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2 L. FU

deployment of many envisioned Advanced Traffic Management and
Information Systems (ATMIS). Ideally, anticipated and quantitative
information such as time-dependent delay caused by an incident
should be estimated and provided to drivers to maximize the effect of
information provision. Procurement of such information is how-
ever not a trivial task because of the complex interactions among
various factors such as incident location and severity, incident
response capacity, demand fluctuation and diverse driver responses
to information. Moreover, most of these factors are subject to high
uncertainty and information available to quantify them is often
incomplete and subjective in nature. Consequently, provision of crisp
values of expected delays to drivers through systems such as
changeable message signs (CMS) would inevitably lower drivers’
trust in the accuracy of the provided information because the actual
delays they would experience will be either larger or smaller than
what were suggested. This underlying dilemma has become a major
reason for many traffic management authorities to opt for less
effective, but more credible alternatives such as providing qualitative
information only. The goal of this paper is to demonstrate that, with
an appropriate delay prediction model, it is possible to resolve this
dilemma.

Traditionally, incident delay is estimated using a deterministic queu-
ing model that assumes that the traffic arrival rate, capacity reduction
and incident duration can be identified exactly. This approach may be
adequate for ‘after’ evaluation where the information on the traffic
volume and incident situation is readily available. However, it is
inappropriate for prediction of incident delay in real-time applications
because the only information typically available is some linguistic
descriptions on the current status of the incident (removed or not/lane
closures/current queue), possible traffic diversion (traffic volume) and
the time required to remove the incident (incident duration). Such
linguistic descriptions inevitably involve uncertainties such as impreci-
sion and vagueness or fuzziness. Ignorance of these inherent uncertain-
ties may result in a biased prediction of the incident delay as well as
a loss of subjective information on the pattern of the incident delay
(e.g. variation of incident delay) that may be significant for many
transportation applications [1,2]. The objective of the present research
was to develop an incident delay prediction model that can explicitly
consider the uncertainties involved in traffic demand, capacity, inci-
dent duration and current queuing status.

Most of the existing incident delay estimation methods focus on the
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3INCIDENT DELAY PREDICTION

estimation of total delay caused by incidents. Examples include Chow
[3], the Highway Capacity Manual [4], Wirasinghe [5], Morales [6]
and Al-Deek et al. [7]. These methods are intended only for ‘after’
incident evaluation and information on traffic conditions and incident
situation is assumed known. Messer et al. [8] developed a method for
predicting the travel time required to traverse a freeway segment with
incident congestion. The model was developed based on the shock
wave theory for use in the operations and control of CMS. In their
research, it was assumed that all of the inputs were known a priori and
the model is therefore deterministic. Recently, Fu and Rilett [9]
developed a stochastic incident delay model in which the incident
duration is assumed to be a random variable with known distribution
and all other parameters are assumed deterministic. It should be noted
that it becomes mathematically intractable to develop similar types of
prediction models if more than one parameter is needed for consider-
ation as random variables.

With the rapid development of Intelligent Transportation Systems
(ITS) field in the past decade, various link travel time estimation and
prediction methods have been proposed for demonstration ITS projects
and simulation studies. Hoffman and Janko [10] developed a link
travel time estimation and prediction method that has been used in the
ALI-SCOUT system. In their approach the link travel time is predicted
by scaling the historical travel time based on current detected link
travel time. Koutsopoulos and Xu [11] presented an approach based on
information discounting theory as an attempt to improve Hoffman’s
model. In the ADVANCE project [12], the proposed link travel time
estimation method treats incident-absent situations and incident-pre-
sent situations separately, in which historical link travel time is used
for calculating vehicle routes. It is important to note that all of these
methods are fundamentally heuristic and do not fully make use of
information on the status of the incident such as lane closure, possible
incident duration and traffic volume. Therefore, techniques that simply
use a scaling factor may result in over-estimation or underestimation
of the actual link travel time.

Many simulation studies have been conducted to evaluate the poten-
tial benefits of ATMS/ATIS. One of the essential components of these
simulation models is the link travel time model that is used to estimate
the link travel time for use in route calculation. Koutsopoulos and
Yablonski [13] presented a theoretical link travel time estimation
model in which the incident delay was estimated by a deterministic
model. Although the incident and their attributes (reduced capacity and
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4 L. FU

incident duration) were randomly generated, this information was
assumed to be known and was used directly for identifying optimal
routes. Al-Deek and Kanafani [14] evaluated the benefits of an ATIS
application called in-vehicle route guidance systems (RGS)
specifically in the case of incident congestion. In their model, incident
duration was also assumed to be deterministic, and a deterministic
queuing model was used to estimate the queuing delay. All these
simulation applications assumed an advanced knowledge of the inci-
dent situation and then ‘guide’ the vehicles based on this information.
However, in a real-time operation, the evolution of incident situation
can not be predicted exactly and the use of such ‘extra’ information
may result in over-estimation of the benefits from an ATMS/ATIS
project.

The imprecision of travel time data and its implication to various
related decision-making problems have been studied by several other
researchers. Teodorovic and Kikuchi [15] applied fuzzy inference
technique to address the route choice problem with fuzzy link travel
times. As an extension, Lotan and Koutsopoulos [16] proposed a
framework for modeling route choice behaviour under provision of
real-time traffic information. Kikuchi and Donnelly [2] conducted a
study on a specific dial-a-ride vehicle routing and scheduling problem
where the origin–destination (O–D) travel time and the desired time of
vehicle stop requested by customers are modeled as fuzzy numbers.
These studies however did not provide any specifics on how fuzzy
travel times can be estimated, especially during incident conditions.
Akiyama and Yamanishi [17] proposed a method to transform forecast
travel time data (crisp) to practical information (fuzzy numbers) to
service the end users (drivers). In their paper, it is not clear whether or
not various fuzzy information that may be available in a real-time
prediction environment is actually used to calculate the travel time
value.

This paper proposes a framework based on fuzzy set theory to
model the evolution of incident congestion or queue development. The
rationale behind this approach is that information typically available
under incident conditions is often in the form of linguistic descriptions
characterized by imprecision and vagueness. The paper first describes
various uncertainties involved during incident conditions and how they
can be systematically modeled on the basis of fuzzy set theory. A
fuzzy queuing model is subsequently presented for predicting the
possible delay that a vehicle will experience at an incident location
based on real-time information on current queuing conditions, future
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5INCIDENT DELAY PREDICTION

traffic arrivals, capacity reductions and the vehicle’s arrival time.
Sensitivity analyses of the estimation error by a deterministic model as
a function of the fuzziness of various input variables are finally
performed. A case study is then presented to demonstrate the appli-
cation of the proposed model in composing location–dependent delay
messages for CMS.

2. A FUZZY INCIDENT DELAY MODEL

2.1. Problem Statement

Consider a hypothetical case that an incident has occurred on a
high-volume road section, which has caused queue and congestion due
to reduction of capacity on this road section. As a result, it can be
expected that the queue and congestion will begin to buildup from the
location of incident and any vehicle entering this road section may
experience delay caused by the congestion. The problem is to provide
a prediction, at current moment, of the incident delay that a vehicle
may experience if it were to enter this road section at a given time in
future.

Delay that a vehicle will experience as a result of an incident
depends on many factors including incident severity (capacity re-
duction), incident duration, traffic volume and the time when the
vehicle arrives at the incident location. In a practical situation, each of
these factors is subject to uncertainty. It would be a matter of a simple
application of deterministic queuing theory or shock wave theory if we
could predict the exact value of these factors. However, in reality,
most of these factors are subject to a certain level of uncertainty and
the information that may be available for estimating these factors is
commonly imprecise or vague. The following sections discuss the
sources of these uncertainties and how they can be modeled as fuzzy
numbers.

2.1.1. Traffic Arrival Rate

Under normal traffic condition, the traffic arrival rate is usually stable
and can be fairly accurately estimated based on historical traffic
counts. However, during incident conditions, the prediction of traffic
arrivals is no longer a trivial task because some drivers may have been
informed of the incident occurrence and decide to divert to other
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6 L. FU

routes. How much traffic will divert and at what rate will depend on
many factors such as traffic information coverage, drivers’ acceptance
of the provided information and local network conditions. Currently,
there is no dependable model available that can be used to capture
these complexities and provide an accurate prediction of the dynamic
traffic conditions. However, it can be reasonably expected that an
approximate estimation of the traffic diversion may be available. For
example, an experienced traffic manager may be able to give such
estimation as ‘About 20–30% of the traffic will divert to avoid the
incident congestion’, or ‘A majority of the drivers will still use the
route even though one lane is closed due to the incident’. These
linguistic terms can be properly modeled by a fuzzy set or a fuzzy
number.

2.1.2. Incident Duration

The time taken to remove an incident and recover the road capacity, or
incident duration, is another key piece of information needed for
predicting the incident delay. It has been observed that incident
duration usually has a large variation depending on incident severity
and location, traffic conditions and the availability of incident manage-
ment [18,19]. For example, Giuliano [18] showed that the mean
duration is about 37 min with a standard deviation of 30 min while
Cohen and Nouveliere [19] indicated that the mean duration is 26 min
with a standard deviation of 23 min. Therefore, it is nearly impossible
to give a precise prediction of the incident duration even when there
is a large amount of historical data available. However, it is not
unusual for an experienced incident response team or highway police
to give an estimation of the duration after they know the incident
situation and location. For example, they may provide statements such
as ‘it would take about 30 to 40 min to remove the debris’, ‘it will take
at least one hour’ or ‘It shouldn’t take longer than two hours’. Such
information presented in linguistic terms is commonly imprecise or
vague and can be adequately represented using fuzzy numbers.

2.1.3. Current Queue

There is usually a time lag between the current time (the time to make
a prediction) and the incident occurrence. Therefore, it is likely that a
queue has formed at the incident location. The current queue can be
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7INCIDENT DELAY PREDICTION

estimated based on information such as the elapsed time from incident
occurrence, traffic arrivals and reduced capacity. However, it is more
likely that it can be directly obtained from various information sources
such as observers, police or a special incident response team. This
information is usually a linguistic description on the queuing status
(e.g. ‘the queue is about to backup to the 12th street’). It should be
noted that in most cases, these descriptions often describe the current
queue reach instead of the queue length. However, these two variables
can be considered as the same before the incident is removed. For the
same reason as for the previous parameters, it can be nicely repre-
sented using a fuzzy set.

2.1.4. Capacity

The capacity under normal traffic condition can be considered as
constant for a given road section and estimated based on HCM [4].
During incident conditions, it has been observed that the departure rate
from the queue (or capacity during the incident) varies significantly
because of the stop-and-go process and ‘gawkers block’. The actual
value can be as low as 1500 to as high as 2000 pcu/h/lane, depending
on the local conditions and driver behavior. It has also been observed
that the laneblocking incidents have more than a proportional impact
on capacity. For example, Urbanek and Rogers [20] indicated that the
blockage of a single lane on a three-lane facility reduced freeway
capacity by 40–50% (instead of 33% based on space reduction).
ccordingly, it is desirable to use a fuzzy number to model the reduced
capacity during incident.

2.1.5. Vehicle Arrival Time

The incident delay that a vehicle may experience also depends on
when the vehicle will arrive at the incident location. For example, if a
Traffic Information Center (TIC) is to provide information to a vehicle
currently at a known location, the prediction of incident delay also
requires the estimation of travel time from the current location to the
incident location. There is no doubt that this travel time involves
uncertainty caused by many factors such as variation of traffic de-
mands, traffic control and driving conditions. Although this travel time
can be modeled as a random variable, the underlying distribution may
not follow a popular mathematical distribution such as normal, log-
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8 L. FU

normal or Beta distribution. Therefore, it is also appropriate to use a
fuzzy number to represent the travel time or arrival time at the incident
location.

2.2. Fuzzy Incident Delay

This section is to discuss how the incident delay can be deduced when
some of the input parameters are modeled as fuzzy numbers. The
methodology is applying a traditional deterministic queuing model
with input parameters systematically represented by fuzzy numbers.
The functional relationship between the fuzzy incident delay and the
input variables are established based on arithmetic operations of fuzzy
numbers using �-cut concept [21].

To simplify the model development, this paper assumes that the
traffic arrival rate and the discharge rate during an incident do not
change with time over the time period when the incident impact
prevails; it is also assumed that the road section or link is long enough
so that there will be no spill-back to the upstream link. It should be
noted that although the model does not explicitly consider the situation
that the incident has been removed and the original capacity has been
restored, it is indeed a special case of the developed model by
assuming the incident duration equal to a single value of zero.

The parameters used in the following discussion are defined as
follows.

The values of these parameters are known and used as basic input:

V � a fuzzy number representing the average traffic arrival rate over
the time period when the incident impact prevails (pcu/h). The mem-
bership function of V is assumed to be known and denoted as �V(x).
The interval of confidence for the level of presumption �, � � [0,1] is
denoted as V� � [�1

(�),�2
(�)] where �1

(�) and �2
(�) can be calculated based

on �V(x);

Q � a fuzzy number indicating the current number of queuing vehicles
with a known membership function denoted as �Q(x). Its interval of
confidence of level �, � � [0,1] is denoted as Q� � [q1

(�),q2
(�)] where

q1
(�) and q2

(�) can be calculated based on �Q(x);

s � a deterministic crisp variable denoting the link capacity after the
incident is removed (pcu/h);

C � a fuzzy number designating the reduced link capacity caused by
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9INCIDENT DELAY PREDICTION

the incident (pcu/h). The membership function of C is assumed to be
known and denoted as �C(x). The interval of confidence for the level
of presumption �, � � [0,1] is denoted as C� � [c1

(�),c2
(�)] where c1

(�)

and c2
(�) can be calculated based on �C(x);

L � a fuzzy number representing the incident duration, or the time
required to remove the incident (from current time). The membership
function of L is assumed to be known and denoted as �L(x). The
interval of confidence for the level of presumption �, � � [0,1] is
denoted as L� � [l1

(�),l2
(�)] where l1

(�) and l2
(�) can be calculated based

on �L(x);

T � a fuzzy number representing the time when a vehicle arrives at the
incident location (from current time). The membership function of T is
assumed to be known and denoted as �T(x). The interval of confidence
for the level of presumption �, � � [0,1] is denoted as T� � [t1

(�),t2
(�)]

where t1
(�) and t2

(�) can be calculated based on �T(x).
Figure 1 shows the �-cut representation of a fuzzy queuing model

where the cumulative traffic arrivals are represented by two straight
lines with rates of �1

(�) and �2
(�) respectively. The �-cut of the capacity

during incident condition are represented by two straight lines with
rates of c1

(�) and c2
(�), which intersect with lines representing recovered

capacity, s, at point A and B. The lower bound of arrivals and upper
bound of discharges intersect at point C while the upper bound of
arrivals and lower bound of discharges meet at point D. The related
parameters are defined as follows.

NA � cumulative number of vehicles discharged at the end of incident
duration l1

(�) with discharge rate (reduced capacity) of c2
(�) (point A in

Fig. 1). It can be determined by Eq. (1):

NA � c2
(�) �(�) (1)

NB � cumulative number of vehicles discharged at the end of incident
duration l2

(�) with a discharge rate (reduced capacity) of c1
(�) (point B

in Fig. 1). It can be determined by Eq. (2):

NB � c1
(a) �2

(�) (2)

NC � cumulative number of vehicles arrived at the end of incident
clearance corresponding to arrival rate �1

(�), incident duration of l1
(�)

and discharge rate of c2
(�) (point C in Fig. 1). It can be determined by

Eq. (3):
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10 L. FU

FIGURE 1 An �-cut representation of a fuzzy incident delay queuing model.

(3)NC �
q1

(�).s � v1
(�)�1

(�).(s � c2
(�))

s � v1
(�)

ND � cumulative number of vehicles arrived at the end of incident
clearance corresponding to arrival rate �2

(�), incident duration of l2
(�)

and discharge rate of c1
(�) (point D in Fig. 1). It can be determined by

Eq. (4):

(4)ND �
q2

(�).s � v2
(�)�2

(�).(s � c1
(�))

s � v2(�)

For a vehicle arriving at the time internal, [t1
(�),t2

(�)], it may join a
possible queue as represented by a point within the polygon 1–2-3–4,
as shown in Fig. 1. The incident delay that could possibly be experi-
enced by this vehicle is the horizontal distance (in time units) from a
point within the polygon to a possible discharge point bounded by the
lines O-A-C and O-B-D. The �-cut of the incident delay can therefore
be determined if the lower and upper bounds of the delay can be
estimated.

The lower bound of the delay is the minimum horizontal distance
from the polygon 1–2-3–4 to the line O-A-C while the upper bound is
the maximum horizontal distance from the polygon to the line O-B-D.
Because the ending zone, as boxed by lines O-A-C and O-B-D, and
two horizontal lines from point 1 and 4, is in most cases a polygon
with four vertexes, the minimum and maximum horizontal distances
can be identified by examining the minimum and maximum delays that
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11INCIDENT DELAY PREDICTION

a vehicle would experience if it joints queue at point 1, 2, 3 and 4 (Fig.
1).

Denote the coordinates associated with the four corner points 1, 2,
3 and 4 shown in Fig. 1 as {tk, nk; k � 1,2,3,4}, where

t1 � t1
(�) ; n1 � q1

(�) � v1
(�).t1

(�)

t2 � t1
(�) ; n2 � q2

(�) � v2
(�).t1

(�)

t3 � t2
(�) ; n3 � q1

(�) � v1
(�).t2

(�)

t4 � t2
(�) ; n4 � q2

(�) � v2
(�).t2

(�)

The minimum delay and the maximum delay for a given point k,
denoted as d1

k and d2
k respectively, can be determined using the

following equations:

0 if nk � NC


d1
k
�

nk

c2
(�) � tk if nk � NA (6)


 nk � �1

(�).c2
(�)

s
� �(�) � tk if NA � nk � NC

0 if nk � ND


d2
k
�

nk

c2
(�) � tk if nk � NB (7)


 nk � �2

(�).c2
(�)

s
� �(�) � tk if NB � nk � NC

The delay interval is therefore

D� � [d1
(�), d2

(�)] (8)

where d1
(�) � min �d1

k�
k � 1,2

d2
(�) � max �d2

k,d0�
k � 3,4

2.3. Expected Incident Delay

The fuzzy incident delay model developed in the previous section
depicts a complete pattern of the imprecision or fuzziness of incident
delay and thus provides the necessary information for any applications
in which the uncertainty of incident delay is explicitly considered in
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12 L. FU

decision-making process or information provision. However, there is
often a situation in which a single represented value (or expected
value) is finally used as input to other decision-making processes. For
example, an RGS commonly uses a single value of link travel time
(including delay) to identify the optimal routes in a traffic network.
The expected value of a fuzzy set can be calculated using the centroid
of gravity technique. For a fuzzy set A with membership function
�T(x), the expected value (zA) is defined as:

(9)zA �
�x�A(x)dx
��A(x)dx

Since Eq. (8) gives only the interval of confidence at level of presump-
tion � instead of an explicit membership function of the incident delay,
an approximation scheme has to be used to calculate the integration
involved in Eq. (9). Assume that M levels of �-cuts represented by
vector {�0 � 0.0, �1, �2,…,�M � 1.0} are used for calculating fuzzy
incident delay. For an �-cut set of level �i, the confidence of interval
can be calculated based on Eq. (8). Given all the confidence of
intervals, the centroid zD of the fuzzy incident delay can then be
approximated by:

zD �

�
M � 1

i � 0
�(�i � 1 � �i).(d2

(�i � 1) � d1
(�i � 1) � d2

(�i) � d1
(�i)).zi�

�
M � 1

i � 0
�(�i � 1 � �i).(d2

(�i � 1) � d1
(�i � 1) � d2

(�i) � d1
(�i)).zi� (10)

where zi �
d1

(�i) � d1
(�i � 1) � d2

(�i) � d2
(�i � 1)

4

3. SENSITIVITY ANALSYSIS: A COMPARISON TO
DETERMINISTIC MODEL

As discussed in section 1, incident delay is traditionally estimated
using a deterministic queuing model which assumes that the attributes
of an incident (capacity reduction, duration) are known or can be
predicted exactly. The incident delay based on deterministic queuing
model can be calculated by Eq. (11), where the same notation used for
the fuzzy queuing model are utilized, except they should be interpreted
as deterministic variables:
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13INCIDENT DELAY PREDICTION

0 if T � T2


d �
Q � T.(V � C

C
if T � T1 (11)


 Q � T.(V � S) � l.(S � C)

s
if T1 � T � T2

where T1 �
C.L � Q

V
and T2 �

Q � L.(S � C)
S � V

Apart from the fact that the deterministic model does not provide
information on the uncertainty of incident delay and is incapable of
incorporating various fuzzy information, it may also generate a biased
estimate of the expected incident. The following section provides a
numerical example to demonstrate the estimation bias of the determin-
istic model and its sensitivity to the imprecision in input parameters
including incident duration, capacity, traffic arrival rate and initial
queue.

Consider the case that an accident has been detected on a three-lane
freeway segment. The traffic management center needs to predict the
possible delay for a vehicle that were to enter that freeway segment. It
is assumed that the traffic arrival rate, incident duration and capacity
during incident can be modeled as symmetrical fuzzy trapezoidal
numbers (TrFN) with known membership functions. Note that for a
TrFN, the membership function can be defined by four parameters,
{b1,b2,b3,b4}. The data used for analysis as a base case are summarized
in Table I, where the expected values are given for use to estimate the
delay by a deterministic model. In addition, a measure called relative
divergence is used to define the fuzziness of a fuzzy number [21]. For
a symmetrical TrFN represented by {m � �2, m � �1, m � �1, m � �2}
(where m is the expected value), the relative divergence or the
fuzziness can be determined by (�1 � �2)/2m.

Based on the given data, the fuzzy incident delay and the expected
incident delay (Eqs (8) and (10)), as well as the incident delay
estimated by the deterministic model (Eq. (11)) can be calculated for
further analysis. The fuzzy incident delay is approximated using five
levels of presumption with a � {0; 0.2; 0.4; 0.6; 0.8; 1.0}.

Figure 2 shows a series of fuzzy incident delays corresponding to
different vehicle arrival times when the incident duration is a fuzzy
number and all other parameters are deterministic (taking the expected
value given in Table I). As it would be expected, any earlier arrivals
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15INCIDENT DELAY PREDICTION

(e.g. before 5 min from current time) will experience a definite amount
of delay with very little imprecision involved (see Figs 2(a) and 2(b)).
After that, the variation of the incident duration takes effect and the
fuzziness of the predicted incident delay becomes significant. For
example, for a vehicle arriving at the incident location in 10 min, its
possible delay ranges from 56 to 202 s (Fig. 2(c)). Due to the possible
removal of the incident, the expected value and the fuzziness of the
incident delay for vehicles arriving after the expected incident duration
decreases (Figs 2(d) and 2(e)). Finally, the incident queue and result-
ing congestion is cleared and vehicles will experience no delay at all
(Fig. 2(f)).

A sensitivity analysis is conducted by assuming one of the input
parameters is a fuzzy number and the rest take the deterministic values
given in Table I. The variation of the fuzziness of the input variable is
generated by increasing or decreasing the fuzziness around the base
case number.

Figure 3 illustrates the expected delay that a vehicle may experience
as a function of its arrival time at the incident location under different
fuzziness of incident duration. It can be seen that the deterministic
model would over-estimate the maximum expected incident delay
while it gives under-estimation for vehicles with arrival time around
the expected queue clearance time. For example, in the base case (20%
fuzziness), if the vehicle arrives at the link 7 min after the incident, the
deterministic model would over-estimate the expected incident delay
by approximately 20%. The deterministic model predicted no delay for
a vehicle arriving at 20 min while the fuzzy model predicted a delay
of 20 s. The maximum estimation error increases proportionally with
the imprecision of the incident duration. It should be noted that similar
finding has been reported by Fu and Rilett [9] although their analysis
was based on probabilistic theory.

As shown in Fig. 4, the fuzziness of the traffic volume has a
significant impact on the prediction of the expected incident delay.
Although the delay is slightly overestimated by the deterministic
model, the major problem resulting from the deterministic treatment is
the underestimation of the expected delay. For example, if the fuzzi-
ness of the arrival traffic volume is 20%, the fuzzy model shows that
a vehicle may be delayed by the incident even arriving 40 min after the
occurrence of the incident. The maximum under-estimated amount is
approximately 50% of the maximum delay.

Figure 5 shows the presence of fuzziness in the capacity during
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16 L. FU

FIGURE 2 Fuzzy incident delay as a function of arrival time.

incident would mostly result in under-estimation of the expected delay.
As the fuzziness of the incident capacity increases, the estimation error
increases proportionally. However, it seems to be that the time period
during which there is an nonzero expected delay is bounded (e.g. 25
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17INCIDENT DELAY PREDICTION

FIGURE 3 Relationship between expected incident delay and fuzziness of incident
duration.

min in this example). The time when the maximum expected delay
occurs tends to shift earlier as the fuzziness of the capacity increases.

Different from the previous parameters, the fuzziness of the initial
queue has negligible impact on the prediction of the expected incident

FIGURE 4 Relationship between expected incident delay and fuzziness of traffic
arrival rate.
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18 L. FU

FIGURE 5 Relationship between expected incident delay and fuzziness of capacity
during incident.

delay, as shown in Fig. 6. This implies that it may not be necessary to
consider the imprecision of the current queue status when only the
expected incident delay is to be estimated.

4. AN EXAMPLE APPLICATION

This section presents a hypothetical case to demonstrate the potential
application of the proposed model. Consider the case that an accident
was detected on a three-lane freeway section at 3:20 p.m., as shown in
Fig. 2. Two CMS are available for the traffic management center
(TMC) to post incident delay information. The messages are intended
for drivers who are just in the view of one of the CMS. In order to
determine what message should be displayed, the TMC needs to
predict the possible delays that would be experienced by vehicles if
they were to continue to travel on the freeway section instead of
diverting to other routes. It is assumed that some incomplete pieces of
information are available which permit the representation of the traffic
arrival rate, incident duration, capacity during incident, and current
queuing status as fuzzy trapezoidal numbers (TrFN) represented by {a,
m, n, b}. The data used for analysis are summarized in Fig. 7. Two
prediction scenarios are considered. Scenario 1 represents the esti-
mation task at the time 3:20 p.m., that is, right at the time the incident
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19INCIDENT DELAY PREDICTION

FIGURE 6 Relationship between expected incident delay and fuzziness of initial
queue.

is detected while scenario 2 models the prediction task at 3:40 p.m., at
which time the incident is expected to be removed soon. Note from the
data that a larger value of current queue was used in scenario 2 as
compared to scenario 1 to reflect the likely congestion development.

Based on the given data, the fuzzy incident delay, as approximated
using five levels of presumption with a � {0; 0.2; 0.4; 0.6; 0.8; 1.0},
can be calculated for further analysis. Fig. 3 shows the predicted fuzzy
incident delays under the two given scenarios for vehicles at each
CMS. The arrival times of the vehicles at a given CMS were generated
based on the distance from the CMS to the incident location and a
speed of 100km/h. The following findings are observed from the
predicted delay values shown in Figure 8:

• There exists a significant amount of uncertainty in incident delay.
This indicates the need to recognize it explicitly in information
provision. For example, instead of displaying a single estimate of
delay on a CMS, an interval of possible delay, such as ‘incident
delay between 15–20 min’, should be used.

• CMS at different locations (distances from an incident spot) should
display different delay information to account for differences in
vehicles’ expected arrival time. Generally, during the time period
that incident congestion starts to build up (scenario 1), CMS farther
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20 L. FU

FIGURE 7 Freeway section with an incident.

FIGURE 8 Estimation of fuzzy incident delay for CMS.

away from the incident spot (CMS 2) should display delay values
higher than those on CMS nearer to the incident spot (CMS 1).
Conversely, when the incident is soon to be removed (scenario 2),
CMS near the incident spot (CMS 1) should display delay values
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21INCIDENT DELAY PREDICTION

higher than those on CMS farther away from the incident spot
(CMS 2).

5. CONCLUSON

This paper developed a fuzzy queuing model that can be used to
predict the delay that a vehicle would experience if traveling through
an incident location. In contrast to the traditional deterministic models,
the proposed model explicitly considers the uncertainties involved in
future traffic arrivals, incident duration, departure rate during incident
and current queue status and allows easy incorporation of imprecise
and vague information on these variables. The model developed in this
paper does not require significant additional data or computational
requirements over traditional methods and therefore may be readily
adopted for ATMS/ATIS applications or simulation studies.

The numerical example has shown that that a deterministic model
may overestimate and underestimate the expected incident delay,
depending on when the vehicle arrives at the incident location. The
maximum estimation error is found to be highly sensitive to the
fuzziness of traffic arrival rate, incident duration and capacity during
incident. This implies that it should be cautious to use a deterministic
model for predicting the expected incident delay when some of the
input variables are subject to large variation and imprecision.

It should be pointed out that the methodology presented in this paper
assumes that the input variables can be modeled as fuzzy numbers and
the related membership functions are known a priori. As a result, the
implementation of the proposed model requires an interface to gener-
ate membership functions of the input variables based on various
sources of information in real-time. The next step of this research
will focus on the development of this type of interface and the
calibration and refinement of the proposed model for application in
ATIS/ATMS.
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